Indian Statistical Institute, Bangalore Centre J.R.F. (I Year) : 2016-2017 Semester I : Mid-Term Examination Analysis - I

07.09.2016 Time: $2\frac{1}{2}$ hours. Maximum Marks : 40

Note: Notation and terminology are understood to be as used in class. State clearly the results you are using in your answers.

- 1. $(8 + 2 = 10 \text{ marks}) (\Omega, \mathcal{B}, \mu)$ is a σ -finite measure space. For $E, F \in \mathcal{B}$ define $d(E, F) = \mu(E\Delta F)$.
 - (i) Show that $(E, F) \mapsto d(E, F)$ satisfies the triangle inequality.
 - (ii) Is d a metric on \mathcal{B} ?
- 2. (10 marks) Let $SW = \{(-\infty, x] \times (-\infty, y] : (x, y) \in \mathbb{R}^2\}$ denote the class of all closed 'south-west regions' in \mathbb{R}^2 . Show that the Borel σ -algebra $\mathcal{B}(\mathbb{R}^2)$ is generated by the class SW.
- 3. (10 marks) Let f_1, f_2, f_3, f_4 be real valued Borel measurable functions on a measurable space (Ω, \mathcal{B}) . Let $g(\omega) =$ second smallest among the real numbers $\{f_1(\omega), f_2(\omega), f_3(\omega), f_4(\omega)\}$. Show that g is Borel measurable.
- 4. (10 marks) For $n = 1, 2, \cdots$ let f_n be a real valued measurable function on a σ -finite measure space $(\Omega, \mathcal{B}, \mu)$ such that

$$\sum_{n=1}^{\infty} \int_{\Omega} |f_n(\omega)| d\mu(\omega) < \infty.$$

Show that $\sum_{n=1}^{\infty} f_n$ converges μ -a.e. to a μ -integrable function f, and that

$$\int_{\Omega} f(\omega) d\mu(\omega) = \sum_{n=1}^{\infty} \int_{\Omega} f_n(\omega) d\mu(\omega)$$